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Abstract
We study the dynamic response of a [111] quantum impurity, such as lithium
or cyanide in alkali halides, with respect to an external field coupling to the
elastic quadrupole moment. Because of the particular level structure of a eight-
state system on a cubic site, the elastic response function shows a biexponential
relaxation feature and a van Vleck type contribution with a resonance frequency
that is twice the tunnel frequency �/h̄. This basically differs from the dielectric
response that does not show relaxation. Moreover, we show that the elastic
response of a [111]-impurity cannot be reduced to that of a two-level system.
In the experimental part, we report on recent sound velocity and internal friction
measurements on KCl doped with cyanide at various concentrations. At low
doping (45 ppm) we find the dynamics of a single [111]-impurity, whereas at
higher concentrations (4700 ppm) the elastic response indicates rather strongly
correlated defects. Our theoretical model provides a good description of
the temperature dependence of δv/v and Q−1 at low doping, in particular
the relaxation peaks, the absolute values of the amplitude and the resonant
contributions. From our fits we obtain the value of the elastic deformation
potential γt = 0.192 eV.

1. Introduction

The low-temperature properties of alkali halides may be significantly modified by the presence
of substitutional impurities, such as Li, CN, or OH. Already a few ppm of these defects totally
change the thermal behaviour and the elastic and dielectric response below Helium temperature.

Regarding the polar molecules CN and OH, the point symmetry of the impurity site gives
rise to several equivalent orientations; corresponding off-centre positions arise for the small
lithium ion. Quantum tunnelling between these states results in a ground-state splitting of
about 1 Kelvin. Since the number density of such tunnelling states exceeds, even at low
concentration, that of small-frequency phonon modes of the host crystal, the impurities govern
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the low-temperature properties of the material. The cubic symmetry of fcc crystals favours
eight defect positions in [111]-directions (CN and Li) or six positions in [100]-directions (OH
in KCl). The resulting energy spectra have been discussed in detail by Gomez et al [1], and
agree well with the Schottky peak observed by Pohl and co-workers for various impurity
systems at low doping [2].

In this paper we are concerned with the elastic susceptibiltiy of a [111]-impurity. Because
of the cubic symmetry, such a tunnelling system behaves in many respects as an ensemble
of three two-level systems with energy splitting � [2, 3]. For example, the specific heat
contribution of a [111]-impurity is three times the Schottky peak of a two-state system. A
similar relation holds true for the dielectric response function, since the dipolar transitions
occur between adjacent levels only, as indicated by the dashed lines in the actual energy
spectrum shown in figure 1. This analogy has been used to describe lithium or cyanide defects
in terms of a two-state approximation [4–8].

T1u

T2g

A2u

A1g

Figure 1. Energy spectrum of a [111]-impurity with zero asymmetry energy. Dashed arrows
indicate the allowed dipolar transitions, and full arrows the quadrupolar ones.

The elastic response function, however, shows a more complex behaviour, resulting from
the tensor character of the quadrupole operator Qij and the structure of the energy spectrum
shown in figure 1. According to the allowed quadrupolar transitions indicated by solid arows in
figure 1, sound waves or external stress perturb the impurity in two ways: first, they mix states
separated by twice the splitting, giving rise to a van Vleck type susceptibility with resonance
frequency 2�/h̄. Second, they lift the degeneracy of the states of a given triplet level, resulting
in a relaxation contribution to the response function.

Early measurements in KCl:CN samples [9] in the classical regime (kBT � �) showed
that the change of sound velocity of a T2g-mode (ê = [110], k̂ = [001]) varies as expected
similiar to 1/T with temperature. Yet in addition, these experiments showed a change of sound
velocity for an Eg-mode (ê = [110], k̂ = [11̄0]) with an amplitude of about ten times smaller
than the T2g ones, whereas this mode should be unaffected according to the simplest model of
a symmetric [111]-tunnelling defect.

When measuring the sound velocity (T2g-mode) of KCl:Li as a function of temperature
in the tunnelling regime, Hübner et al found a hump at kBT ≈ � [10]. They related this
observation to relaxational transitions between degenerate states, by calculating the static
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elastic response as the second derivative of the free-energy of the impurity ion. Their results
are valid in the low-frequency limit, where the external frequency is smaller than the impurity
relaxation rates.

The internal friction, however, cannot be obtained from a static theory, and the low-
frequency limit is not always justified for the sound velocity. Starting from standard dynamic
perturbation theory, we develop a dynamic theory for the elastic response function of a [111]-
impurity coupled to a phonon heat bath. The main purpose of this paper is to point out
the peculiarities of the elastic response function that arise from the degenerate states of the
energy spectrum shown in figure 1. Moreover, we report sound velocity and internal friction
data of a T2g-mode for KCl doped with cyanide molecules, and discuss them in terms of our
[111]-impurity model with damping.

The outline of our paper is as follows. In section 2 we present the model and the basic
equations for the elastic response function of a single impurity. The temperature dependence
of the internal friction and sound velocity is evaluated in section 3. In section 4 we give some
details of the experiments on KCl:CN, which are discussed in section 5. The final section
contains a summary.

2. Theory

2.1. Quantum operators of a [111]-impurity

We start by discussing the properties of the energy eigenstates and by presenting our notation
based on pseudospin operators. As shown in figure 1, the energy spectrum contains four
equidistant levels; the upper and lower ones, A1g and A2u, are single quantum states, whereas
the middle levels T1u and T2g are three-fold degenerate. This ground-state multiplet can be
described as the direct product of three two-level systems with energy splitting �.

Each energy eigenstate is a superposition of states |r〉 localized at the eight impurity
positions

r = 1

2
d(σ 1

z , σ
2
z , σ

3
z ) (1)

with the effective two-state coordinates σ i
z . For a lithium impurity, the off-centre positions

r form a cube of side-length d , whereas for cyanide impurities r indicates the orientation of
the cigar-shaped polar molecule. Due to quantum tunnelling along the axes i = 1, 2, 3, the
energy eigenstates factorize as |σ 1

x 〉|σ 2
x 〉|σ 3

x 〉, where the variables σ i
x = ±1 label odd and even

superpositions |σ i
x〉 = 2−1/2 { |ri = d/2〉 + σ i

x |ri = −d/2〉 } along the i-axis.
Accordingly, the quantum operators of the impurity may be written as direct products

of pseudospin operators σ i
α , where α = x, y, z label the usual Pauli matrices and α = 0 the

identity operator. In terms of quantum states at ri = ±d/2 we have

σ i
x = |d/2〉〈−d/2| + | − d/2〉〈d/2| (2)

σ i
z = |d/2〉〈d/2| − | − d/2〉〈−d/2|. (3)

Thus a lithium or cyanide impurity is described as the product of three two-state variables. We
adopt the shorthand notation for its quantum operators

Aαβγ = σ 1
α ⊗ σ 2

β ⊗ σ 3
γ (4)

where i = 1, 2, 3 label the crystal axes and Greek indices α = 0, x, y, z the pseudospin
operators. When denoting by 1

2� the tunnelling amplitude between adjacent impurity
positions, we obtain the Hamiltonian

HS = −�

2
(Ax00 + A0x0 + A00x) . (5)
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Its eigenstates may be labelled according to the eigenvalues ±1 of σ i
x ; for example, the ground-

state A1g reads as |+++〉, and the states of the triplet level T1u as |−++〉, |+−+〉, and |++−〉.
According to the above discussion, the statistical operator ρ = e−βHS /tr(e−βHS ) factorizes as

ρ = ρ1 ⊗ ρ2 ⊗ ρ3 ρi = 1

2

(
1 + σ i

x tanh(�/2kBT )
)
. (6)

(In the limit of zero temperature, the even-state σ i
x = 1 is occupied with probability 1.) From

the statistical operator it is evident that the specific heat anomaly due to N such defects is
identical to the Schottky peak of 3N two-level systems with the Hamiltonian 1

2�σx . As to the
dynamic properties, a similar relation holds true for the dielectric susceptibility. This is not
surprising, since dipolar transitions involve a single coordinate ri and occur between adjacent
levels with splitting � only; see figure 1.

A different situation, however, is encountered when considering the elastic response: for
a lattice distortion that varies sufficiently slowly in space, the interaction potential is given by
the term that is linear in the elastic strain εij (R),

W(r) = −Qij (r)εij (r) . (7)

Equation (7) is the lowest-order term of a multipole expansion with the elastic quadrupole
operator

Qij (r) =
∑
n

Rn
jK

n
i (r) (8)

where Rn are the perfect lattice sites of the surrounding crystal atoms and Kn are corresponding
Kanzaki forces that are related to the actual static shifts through the perfect lattice Green
function [11]. For our purpose, it is sufficient to consider Kn as the force exerted by the defect
at position r on the atom at site Rn, in terms of the atomic potential Kn(r) = −∇Vn(R

n −r).
We recall that we are looking only for the part ofW(r) that depends on the defect coordinate

r. Thus we may expand the force Kn in terms of r; due to the cubic symmetry of the crystal,
the parity of the defect and the fact, that the square of the two-state coordinate r2

i = d2/4 is a
constant, the quadrupole operator reads in quadratic approximation in r

Qij = g rirj (1 − δij ) (9)

with the elastic coupling energy g. It involves two coordinates, and hence causes transitions
between energy eigenstates that differ in two labels σ i

x . Thus, elastic perturbations induce two
types of transition as indicated by the solid arrows in figure 1.

2.2. Phonon coupling

Noting equation (1) and Az00A0z0 = Azz0, we may write the quadrupole operators as
Q12 = g(d/2)2Azz0, etc. With γ = g(d/2)2, we obtain the impurity–phonon interaction [8]

HSB = 2
∑
α

γα

(
Azz0 ε

α
12 + Az0z ε

α
13 + A0zz ε

α
23

)
. (10)

When evaluating the strain tensor at the impurity site R and taking the limit of long wavelenths,
kd � 1, we find

εα
ij = i

2

∑
k

√
h̄

2mωka

eikR
(
eαi (k)kj + eαj (k)ki

) (
bk,α + b

†
−k,α

)
. (11)

Here k and eα are wave and polarization vectors, and α labels the longitudinal and transverse
phonon branches. In the following we are interested in the relaxation rates of the defect. These
rates involve phonons with frequencies of about 30 GHz (corresponding to twice the energy
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splitting � of the defect). Since the corresponding wavelength λ � 5 µ m (see table 1 for the
speed of sound) is large compared with the size d � 1.4 Å of the defect, the long wavelength
limit is valid.

2.3. Asymmetry energy

Up to now we have considered an impurity in a potential that reflects the cubic site symmetry.
The strong dipolar and elastic interactions of nearby impurities, however, break that symmetry
and give rise to an effective asymmetry energy,

V = −v1

2
Az00 − v2

2
A0z0 − v3

2
A00z (12)

where the vi are random quantities with zero mean. We assume a Gaussian distribution with
width σ :

P(�v) =
∏
i

Pi(vi) with Pi(vi) = 1√
2πσ

exp

(
−1

2

v2
i

σ 2

)
. (13)

In principle, the vi are dynamic variables closely related to the position operators of nearby
impurities. In the case of weak interaction, vi � �, however, they may be treated as static
random fields. Equation (12) accounts for random fields arising from dipolar interactions;
elastic coupling would lead to a potential that involves quadrupole operators such as Azz0.

3. Elastic response function

The lattice vibrations of the host crystal act on the tunnelling impurity as a heat bath at
temperature T . Upon a perturbation by an external strain field, the impurity regains the thermal
equilibrium through absorption or emission of resonant phonons. Since the impurity-phonon
coupling is weak, the resulting damping rates can be evaluated in second-order perturbation
theory.

3.1. Dynamic perturbation theory

The linear response of the impurity to a time-dependent external strain field is described by
the commutator correlation function 〈[Qij (t),Qij ]〉. For convenience, we use dimensionless
quadrupole operators, e.g. Azz0 = (2/d)Q12 with 〈A2

zz0〉 = 1; all relevant response functions
can be expressed in terms of

χ(t) = 〈[Azz0(t), Azz0]〉. (14)

It is convenient to calculate first the correlation matrix

Cαβγ ;δεζ (t) = (Aαβγ (t)|Aδεζ ) (15)

where we have defined the symmetrized correlation function

(A|B) = 1

2
〈AB + BA〉. (16)

Our evaluation of the correlation matrix is based on the Mori–Zwanzig projection formalism;
the resulting memory kernel is calculated to second order in the impurity-phonon coupling [12].
Thus we obtain a matrix equation for the Laplace transform of (15),

C(z) = −1

z − 3 − K(z)
M (17)
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with the usual definitions of the static correlations

Mmn = (Am|An) = (η−1)mn (18)

the frequency matrix

3mn = (Am|LAp)ηpn (19)

and the memory kernel

Kmn(z) = (Ȧm|(z − L0)
−1|Ȧp)ηpn. (20)

For convenience, we have replaced the triple index pair of (4) with m, n, and we have used the
shorthand notations Ȧi = i[HSB,Ai] and h̄L0∗ = [HS + HB, ∗], where HB = ∑

h̄ωkb
†
kbk .

The thermal average 〈. . .〉 is with respect to ρ and the equilibrium distribution of the phonons.
Solving the impurity dynamics now amounts to calculating the eigenvalues and residues of

the resolvent [z−3−K]−1. Since there are 43 operators Aαβγ , the matrix equation involves a
64-dimensional space. The matrices C, M , 3, and K being block-diagonal, the actual problem
simplifies significantly.

For symmetry reasons, the time evolution of the three operators Azz0, Az0z, and A0zz is the
same. Therefore it is sufficient to evaluate the dynamics in the invariant subspace containing
one of them, e.g.

A1 = Azz0 A2 = Azy0 A3 = Ayz0 A4 = Ayy0

A5 = Azzx A6 = Azyx A7 = Ayzx A8 = Ayyx.
(21)

In this invariant subspace, 3, M , and K are represented by 8 × 8-matrices that are easily
calculated according to (18)–(20). Note that the commutation relations for the operators Ai

can be traced back to those for Pauli matrices. It can be shown that3 andM can be diagonalized
simultaneously; in the present example it is straightforward to find the corresponding unitary
transformation U and to obtain

3̃ = U †3U = diag(0, 0, 0, 0,−2�,−2�, 2�, 2�)/h̄ (22)

M̃ = U †MU = diag(m1,m1,m2,m2,m3,m4,m3,m4) (23)

with

m1 = (1 − t) (1 − t2)

m2 = (1 + t) (1 − t2)

m3 = (1 + t) (1 + t2)

m4 = (1 − t) (1 + t2)

where we have used β = 1/kBT and t = tanh(β�/2).
Besides the fourfold degenerate zero frequency, there are two doubly degenerate finite

frequencies ±2�/h̄ in Liouville space. While 3 and M could be diagonalized simultaneously,
this is not possible for the memory matrix K . It turns out, however, that its transform K̃ is
diagonal in each of the three degenerate subspaces of 3̃, with bare frequencies 0,±2�/h̄; the
finite off-diagonal entries connect, e.g. the subspace of zero frequency eigenvalue with that
of eigenvalue 2�/h̄. Because of K̃ � �/h̄, we may neglect these off-diagonal entries of
K̃; they would result in very small corrections to the frequencies and residues of the order of
(h̄K̃/�)2. In physical terms, the off-diagonal parts of K̃ in the degenerate subspaces vanish,
since they involve the phonon density of states at zero frequency; in a three-dimensional body,
however, the density of phonon modes vanishes in the limit ωk → 0.

Applying the usual Markov approximation, we evaluate the memory functions K̃(z) at the
corresponding bare frequencies z = 0,±2�/h̄. It is convenient to separate real and imaginary
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parts according to K̃ = K̃ ′ + iK̃ ′′. Whereas the entries in the subspace of zero eigenvalue
are purely imaginary, those belonging to the finite frequencies ±2�/h̄ are complex numbers.
Their real parts K̃ ′(±2�/h̄) would induce a shift of the resonance frequencies from the bare
values ±2�/h̄ to slightly smaller ones. This shift being very small, we discard it and retain
the imaginary, or dissipative, part K̃ ′′ only. The latter form a diagonal matrix 8̃ = �K̃ ′′(z0)

with z0 = 0,±2�/h̄.
With these approximations for the memory kernel, 3̃, M̃ , and 8̃ are diagonal; the

correlation matrix thus factorizes,

C̃jj (z) = −M̃jj

z − 3̃jj + i8̃jj

(24)

where j = 1, . . . , 8 labels the eight eigenvalues given in equations (22) and (23) and those of
the damping matrix 8̃. Since we are interested in the correlation function of the operator Azz0,
we have to calculate the elementC11 of the correlation matrix in the original basis, C = UC̃U †.
The transformation U being unitary, we have

C11(z) =
∑
j

|U1j |2C̃jj (z) (25)

where the vector of coefficients(|U1j |2
)
j

= (0, 1/4, 1/4, 0, 1/8, 1/8, 1/8, 1/8) (26)

satisfies the condition
∑

j |U1j |2 = 1.

The damping rates 8̃jj are calculated to second-order in terms of the impurity-phonon
coupling potential, equation (10). Each rate is given as the convolution of an uncoupled
correlation spectrum C0

ii (ω) and the dissipation spectrum, equation (A.2). The derivation is
straightforward; we merely give the result

8̃ = diag(81, 81, 82, 82, 83, 84, 83, 84) (27)

with
81 = 80(1 + n(2�))

82 = 80n(2�)

83 = 80(1 + 4n(2�))

84 = 80(3 + 4n(2�)).

(28)

Here we have used the Bose occupation factor

n(2�) = 1

eβ2� − 1
(29)

and the coupled phonon Green function, equation (A.2) evaluated at the frequency 2�/h̄,

80 = 28′′(2�/h̄) = π
∑
α

fα

γ 2
α

v5
α

(2�)3

2π2ρh̄4 . (30)

The geometric factor fα arises from the different weight for longitudinal and transverse modes
in the coupling matrix elements.

Now we have an explicit expression for the frequency dependent function, equation (25).
After inverse Laplace transformation we obtain the time-dependent correlation function of the
operator Azz0,

C11(t) = 1

4

(
m1e−81t + m2e−82t + m3cos(2�t + δ3)e

−83t + m4cos(2�t + δ4)e
−84t

)
(31)

which constitutes the basic theoretical result of this paper.
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As the most salient features we note the presence of two relaxation features with different
relaxation rates81 and82. The remaining terms (the so called resonant terms) show oscillations
with twice the tunnelling frequency �/h̄ and different damping rates, with tan δi = h̄8i/2�.
The amplitudesmi vary significantly with temperature; in the high-temperature limit all of them
tend towards unity, mi → 1, whereas for T → 0 one finds m3 = 4 and m1 = m2 = m4 = 0.
Thus the relaxation contributions disappear at zero temperature.

The spectra of the response function, equation (14), and the correlation function, equation
(31), are related through the fluctuation-dissipation theorem,

χ ′′(ω) = (2/h̄)tanh(βh̄ω/2)C ′′
11(ω). (32)

With the usual approximations for the hyperbolic tangent function we thus obtain

χ ′′(ω) = βh̄ω [L1(0) + L2(0)]

+ tanh(β�) [L3(2�) − L3(−2�) + L4(2�) − L4(−2�)] (33)

with the weighted Lorentzian

Li(E) = mi

4

h̄8i

(h̄ω − E)2 + h̄282
i

. (34)

Clearly, the spectrum of the response function χ ′′(ω) contains the same physics as the
correlation function C11; hence the discussion below, equation (31), applies equally well to
equation (33).

The tunnelling impurities can be probed by an external ultrasonic wave with propagation
vector k and polarization vector eα . The attenuation of the latter is given by the internal friction

Q−1
α = n hkα

γ 2
α

;v2
α

χ ′′(ω) (35)

whereas the variation of the sound velocity

δvα

vα
= n hkα

γ 2
α

2;v2
α

χ ′(ω) (36)

depends on the real part of the impurity dynamic susceptibility χ ′. Here n is the number
density of the impurities; the geometric factor hkα , as defined in equation (A.7), accounts for
the orientation of k and eα with respect to the crystal axes.

Since the tunnelling frequency �/h̄ is of the order of 20 GHz, the second term of equation
(33) is immaterial at acoustic frequencies; and the internal friction involves the relaxational
part only,

Q−1
α = n hkα

γ 2
α

;v2
α

1

kBT

[
m1

ω81

ω2 + 82
1

+ m2
ω82

ω2 + 82
2

]
. (37)

Note that both amplitudes are exponentially small at low temperatures, m1 + m2 = 2∗
sech(β�/2)2, though m1 vanishes faster than m2. On the other hand, 81 tends towards
the constant 80, whereas 82 disappears. Thus, in the intermediate range kBT ≈ � both
contributions may be relevant.

Because of the different temperature dependence of the two rates and the corresponding
amplitudes, the variation of Q−1 with frequency changes very much with the ratio ω/80. The
origin of the terms in equation (37) is quite obvious in view of the level scheme of figure 1.
The contribution involving 82 stems from relaxation between the states of the level T1u; the
required intermediate transition to the top level A2u accounts for the temperature factor of 82.
On the other hand, the term with 81 results from the upper triple level T2g; relaxation occurs
through the intermediate state A1g; phonon emission in this downscattering process gives rise
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to the temperature factor of 81. The rates of the resonant contributions in equation (33) can
be discussed in a similar fashion.

Finally, we note that the relaxation rates 81 and 82 satisfy the condition 81 = eβ2�82.
They are related to the phase decoherence rates 83 and 84 through 81 + 82 = (1/4)(83 + 84);
thus the transverse rates are larger than the longitudinal ones, contrary to the well-known ratio
for the two-level system, 1/T1 = 2/T2.

3.2. Effects of asymmetry

In order to obtain a realistic model for tunnel impurities, we have to account for the random
asymmetry fields, equation (12). At sufficiently low concentrations, c < 100 ppm or
n < 1019 cm−3, typical values of vi are significantly smaller than the tunnel energy �. Thus
we may use a perturbation expansion in powers of the small parameter vi/�.

Each pole of the dynamic susceptibility, equation (33), is characterized by an amplitude
mi , a damping rate 8i , and an oscillation frequency that takes the values ±2� or 0. It turns
out that the lowest-order corrections to mi and 8i are quadratic in vi/� and thus are of little
significance. Similarly, the finite poles at ±2� are hardly affected by the small asymmetry
energies vi .

A significant change occurs, however, in the zero-frequency poles. When evaluating
equation (17) with equations (5) and (12) and calculating the lowest-order corrections in the
diagonal representation, equation (24), we obtain the set of frequencies

3̃ ≈ diag(η, η,−η,−η,−2�,−2�, 2�, 2�) (38)

with

η = 1/2 (v2
1 − v2

2)/�. (39)

Accordingly, the relaxation contributions L1(0) and L2(0) in equation (33) have to be replaced
by 1

2 (Li(η) + Li(−η)), with i = 1, 2.
Since experimentally frequencies are much smaller than the tunnel frequency �/h̄, the

imaginary part of the susceptibility is determined by the low-frequency poles ±η. When
denoting the average with respect to the random fields vi by a bar, we have

χ ′′(ω) = 1

2
βω

(
L1(η) + L1(−η) + L2(η) + L2(−η)

)
. (40)

When inserting the inverse Fourier transform of the Lorentzians, the integral over vi involves a
Gaussian with complex width parameter (1/2σ 2)± it/h̄�. Performing the Gaussian integrals
we find

χ ′′(ω) = β
ω�

4σ 2

∫ ∞

0
dt

cos(ω̃t)√
1 + t2

(
m1e−8̃1t + m2e−8̃2t

)
(41)

with ω̃ = ω�/σ 2 and 8̃ = 8�/σ 2. We recall that we have used kBT ,� � h̄ω, h̄8.
Now we turn to the real part that is obtained from equation (32) through the Kramers–

Kronig relation. Proceeding as above we insert the inverse Fourier tranform; resorting to the
usual approximations for the temperature-dependent factors and assuming βη/2 � 1, we
obtain the susceptibility

χ ′(ω) = m3 + m4

4

1

�
tanh(β�) + β

∑
i=1,2

∑
±

mi

4

η(η ± ω) + 82
i

(η ± ω)2 + 82
i

. (42)

Averaging over the distribution of asymmetries yields

χ ′(ω) ≈ m3 + m4

4

1

�
tanh(β�) +

∑
l=1,2

ml

4
β

{
1 − ω�

σ 2

∫ ∞

0
dt

sin(ω̃t)e−8̃l t

√
1 + t2

}
. (43)
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3.3. Comparison with a two-level tunnelling system

When investigating the dynamic properties of substitutional impurities, various authors have
used a two-state approximation. For this reason we briefly discuss the response function of
a two-level system (TLS) and compare it with the present results for the eight-state system.
With the notation introduced in section 2, the Hamiltonian of a symmetric TLS reads as

H = 1

2
�σx + σz

∑
α,i,j

γαε
α
ij + Hphonon (44)

which is nothing but the one-dimensional version of equations (5) and (10). When evaluating
the dissipative two-state dynamics one finds that there is no relaxation contribution to the
response function of a TLS; its susceptibility is of purely ‘resonant’ character and similar to
the second term of equation (33).

Thus, the two-state approximation misses the observed relaxation peak in the dynamic
response. In order to mend this failure, an asymmetry energy has been added to equation (44),
yielding H = 1

2�σx + 1
2εσz, with a two-level splitting E =

√
�2 + ε2. The spectrum of the

dynamic susceptibility then reads as

χ ′′
zz = �2

E2
tanh(βE/2)

∑
±

±8

(ω ∓ E/h̄)2 + 82
+

ε2

E2
sech2(βE/2)

βh̄ω · (28)

ω2 + (28)2
. (45)

The amplitude of the relaxation feature is proportional to ε2/E2 and thus vanishes in the
limit of zero asymmetry energy. This feature distinguishes the actual eight-state system from
the two-state approximation. The former contains a strong relaxation feature, even at zero
asymmetry energy. The two-state approximation, however, fails to account for relaxation in
the symmetric case ε = 0.

4. Experimental detail and results

The crystals measured here were seed pulled from the melt at the crystal growth facility of
the Cornell Center for Materials Research. The starting powder of KCl was Merck Industries
‘Superpure’ grade with nominal impurity levels of less than 1 ppm. (A check of the OH− level
in our crystal of ‘pure’ KCl, via UV absorption, confirmed a concentration of 0.5 ppm.) The
cyanide added to the melt was taken from a seed-pulled single crystal of KCN for which the
starting powder had been vacuum baked to remove H2O.

The composition of the final crystal was analysed via infra-red absorption (∼ 2100 cm−1)
to an estimated accuracy of 10% relative error, by comparing the area of the absorbance peak
to a standard measured for us by Fritz Lüty at the University of Utah where he measured the
CN− vibrational spectra at liquid nitrogen temperature and calculated the concentration based
on the known oscillator strength of CN− [14].

The internal friction sample was cleaved directly from the IR absorption sample to ensure
a known CN− concentration. The internal friction was measured with a composite torsional
oscillator as described in [15]. In this method, a 90 kHz quartz transducer (2.5 mm diameter)
and the sample form a composite torsion bar. The quartz end is attached to a thin Be–Cu
pedestal [15] by an approximately 25 mg drop of Stycast 2850FT epoxy, and since the KCl
crystals are quite fragile, a 0.25 mm indium foil was epoxied between the crystal and transducer
to ‘cushion’ the difference in thermal contraction rates of the two components upon being
cooled. The sample length is tuned to be one half of a shear wavelength, so that the composite
oscillator has a resonance frequency at room temperature within 1% of the bare quartz crystal
resonance. This adjustment ensures that the epoxy and indium joint between the quartz and
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sample has almost zero strain, and therefore contributes minimally to the observed internal
friction. (The epoxy and epoxy/indium junctions produce a background contribution to the
internal friction of less than 10−5 at low temperatures.)

The oscillator is driven by a set of electrodes which form a quadrupole configuration
around the transducer and which simultaneously drive and detect its motion. The internal
friction of the sample Q−1

sa is determined from the quality factor Qcomp of the composite
oscillator resonance by

Q−1
sa =

[
Isa + (1 + α)Itr

Isa

]
Q−1

comp (46)

where Itr and Isa are the moments-of-inertia of the transducer and sample respectively, and α

is a correction for the attachment of the transducer to the thin Be-Cu pedestal, α ≈ 0.06 [15].
The relative change in speed of sound can be found from the change in resonance frequency
of the composite oscillator

�v

v sa
=

[
Isa + (1 + α)Itr

Isa

]
�f

f
(47)

where �f/f is determined relative to an arbitrary reference frequency usually at the coldest
temperature of the run. Details on evaluating internal friction from a torsional oscillator can
be found in [16]. The measurements below 1.5 K were made in a dilution refrigerator, and
those from 1.5 to 300 K in an insertable 4He cryostat [17].

We have investigated a T2g-mode (ê = [110], k̂ = [001]) in three samples doped with
45, 370 and 4700 ppm CN−, and a pure sample; the latter provides the background due to the
host crystal and thus permits us to determine the impurity contribution to the elastic response
function.

Figure 2 shows the internal friction as a function of temperature, cyanide concentration
ranging from 0 to 4700 ppm. The data consist of several peaks. The dominant feature occurs
at about 450 mK in the 45 ppm data and moves to about 350 mK in the 370 ppm-data; in the
strongly doped sample (4700 ppm) it results in a broad shoulder beyond the lowest temperatures
investigated. At higher T there are additional peaks with a much weaker intensity, which may
well result from strongly coupled defect pairs [19]. The internal friction of the undoped sample
is significantly smaller, although still remarkably high. (Even after a check for purity, there is
still some unexpected damping in the ‘pure’ KCl. The expected background internal friction
value for pure crystals using this technique is less than 3 × 10−6 below 1 K, as measured in
quartz [16].)

The relative change of the sound velocity is plotted in figure 3. The temperature
dependence of the data may be decomposed into two features. First, there is a contribution
proportional to tanh(E/2kT ) with an energy E of a few K, that is characteristic for quantum
defects and shows the well known 1/T -dependence at higher temperature. Second, the
minimum at T = 0.7 K indicates a relaxation process.

Though the minimum broadens with increasing doping, the three samples show quite
a similar behaviour, and the change in sound velocity is roughly linear in the impurity
concentration.

5. Comparison of theory and experiment

We focus on the data of KCL with 45 ppm CN− since our theory is correct for low doping
only, i.e. for impurities without interaction. With increasing doping, however, their dipolar
interactions are no longer small. The collective dynamics result in the broad internal friction
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Figure 2. The internal friction data of four KCl samples with different concentrations of CN−
dopants are plotted versus the temperature.
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Figure 3. Relative change of sound velocity δv/v for four KCl samples with different
concentrations of CN− dopants are plotted versus the temperature. For convenience, the data
are multiplied by the factors of 10. Note the vertical shift by steps of 0.5 with respect to the
somewhat arbitrary origin at zero temperature.

spectrum shown in figure 2 at higher concentrations; the sharp features indicate strongly
coupled impurity pairs.

The theoretical expressions for symmetric tunnel impurities involve the tunnel energy �

and the damping rate 80, equation (30); taking also finite asymmetry energies as in section
2.3 into account, the Gaussian width σ provides one more parameter. Both the rate 80 and the
prefactors of the internal friction and the change of sound velocity (equations (35) and (36))
depend on the deformation potentials γα , the sound velocities vα and the mass density of the
host crystal ;. The latter quantities are well known; since the longitudinal sound velocity is
significantly larger than the transverse one, we have v−5

t � v−5
l and retain transverse sound

waves only, with vt = 1.7 km s−1 and ; = 1.989 g cm−3. (We neglect the weak dependence
of the sound velocity on the propagation direction.)

The tunnel energy �/kB of CN in KCl has been measured by various techniques, with
different experimental results, such as; paraelectric resonance: 1.87 K [23]; excitation of
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optical vibrations: 1.73 K [24]; specific heat: 1.6 K [25]. The relatively large discrepancy
between these values may be due to experimental uncertainties and different parameters of the
samples, in particular impurity concentration. From our fits to the 45 ppm data we obtained
a value of 1.55 K, which is in reasonable agreement with the above results. Regarding the
asymmetry energy, we useσ/kB = 0.0145 K for the width of the Gaussian distribution. Finally,
the transverse deformation potential γt constitutes the most important parameter, appearing
both in the prefactors and relaxation rates. From our fits we obtain the value γt = 0.192 eV
which is of the same order of magnitude as the values obtained for OH impurities in KCl
(1 eV) [26], in NaCl (1.0 eV) [27] and OD in NaCl (0.34 eV) [27].

First we discuss the internal friction as shown in figure 4. The triangles are the background
corrected data of the 45 ppm sample, i.e. we have subtracted from the original data the values
for the undoped sample. The full line is a fit including asymmetry effects (41) where we used
the parameters given in table 1.
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Figure 4. The [111]-defect theory is fitted at the data of the internal friction of the KCl: 45 ppm
CN− sample. The full line is a fit including asymmetry effects and the short-dashed line without
these. The long-dashed line shows a plot of the internal friction of a two-level-system where we
set (ε/E) = 1 whereas all other parameters was chosen the same as in the former fit.

Table 1. Parameters used for the fits of figures 4 and 5.

ω/2π (sec−1) n (cm−3) ; (g cm−3) vt (km s−1) �/kB (K) γt (eV) σ/kB (K)

84352 1.7 × 1017 1.989 1.7 1.55 0.192 0.0145

The temperature where the maximum occurs depends strongly on the tunnelling amplitude
� and the fraction ω/80; the maximum value of Q−1 varies with the prefactor and the
asymmetry width as far as the mean splitting is bigger than the frequency η̄ = σ 2/� � ω.

The relaxation peak arises where the external frequency is comparable to the slow rate 82,
and Tmax is determined by the relation 82(Tmax) = ω. Thus the exponential decrease of 82 is
essential for the existence of the relaxation maximum.

Note that this mechanism does not exist for two-level tunnelling systems, even with large
asymmetries, since their relaxation rate tends towards a constant 80. As a consequence,
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for ω � 80 the relaxation maximum is suppressed by a factor ω/80, and the internal
friction of a two-level system is by two orders of magnitude smaller than that obtained for
the [111]-impurity model. Note that the parameters gathered in table 1 result in a rate constant
80 = 1.35 × 109 sec−1 which is indeed much larger than the frequency ω = 5.3 × 105 sec−1.
For systems with η > ω the peak is suppressed by ω/η (see equation (40)) which means that
the peak contribution stems from systems with small asymmetries. Therefore, the peak in the
internal friction data determines only a combination of the prefactor and the asymmetry width.

Our simple model accounts well for the position and height of the peak and for its shape
close to the maximum. Yet it strongly underestimates the wings at temperatures well above
and below Tmax. As to the excess spectral weight observed at low temperatures, a more realistic
distribution of asymmetry energies would probably give a better agreement than the Gaussian
used in equation (41). The additional peak at about 2 K may well be due to strongly coupled
pairs.

Now we turn to the relative change of sound velocity as shown in figure 5. The triangles
are data for the 45 ppm sample. The dashed line is a fit without asymmetry, given by equation
(36), and the full line with asymmetry, equation (43). The asymmetry distribution with width
σ merely smears out the temperature dependence. Thus, the fit of figure 5 mainly depends on
the tunnelling amplitude and the prefactor but it hardly varies with the relaxation rate and the
asymmetry width.
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Figure 5. The [111]-defect theory is fitted at the data of the relative change in speed of sound of
the KCl: 45 ppm CN− sample. The full line is a fit including asymmetry effects and the dashed
line without.

Regarding figures 4 and 5, our model fits remarkably well the absolute values of δv/v and
Q−1, the hump in the sound velocity, and the position of the relaxation peak in the internal
friction. The transverse deformation potential is the most relevant parameter that determines
both the absolute values of δv/v and Q−1, and the relaxation maximum of the latter; we find
the value γt = 0.192 eV. (Note the factor 2 in our definition of the phonon coupling, equation
(10).)

The width of the relaxation peak of Q−1 and the low-temperature wing indicate the
relevance of the asymmetry energies, equation (12). The poor quality of our fit at low T

may well be due to the choice of a Gaussian distribution for the asymmetries. Nonetheless,
our results confirm that for the 45 ppm sample, the mean asymmetry is by two orders of
magnitude smaller than the tunnel energy, which is consistent with the model assumptions.
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The present theory accounts fairly well for available data on the relaxation behaviour
of [111]-impurities in alkali halides investigated with T2g-modes, in particular with respect
to the temperature dependence. Yet the multiexponential decay with the two rates 81 and
82 gives rise to quite an intricate relaxation spectrum; thus an experimental investigation of
the frequency dependence would seem most promising. Simliar behaviour was also found
for an Eg-mode [9] contradicting the simplest model of an [111]-defect. Even asymmetries
cannot explain this feature in a simple way. Another open question concerns the thermal
conductivity [2]. The relaxation feature obtained in the present work should significantly
contribute to thermal resistivity at low T . Still, the spectrum of the defects obtained from the
data [2] suggests a more complicated elastic response spectrum and may well require large
asymmetry energies.

Another interesting point would be to extend the present work to the case of strong doping;
this is certainly not an easy task, given the serious difficulties encountered already in the
treatment of interacting two-state systems (see, e.g. [28].) Note, however, that our sound
velocity data in figure 3 depend, roughly speaking, linearly on the impurity concentration.
Thus, it would seem that they do not fullfil the strong-coupling criterion of [8], i.e.
the dipolar interactions have not yet destroyed the coherent tunnel motion.

6. Summary

We have investigated the relaxation of an impurity ion in alkali halides arising from the coupling
to elastic waves. We briefly summarize the main results.

(i) The various elastic and inelastic phonon-mediated transition between the eight quantum
states give rise to an intricate temperature and frequency dependence of the relaxation
contributions to the internal friction and the sound velocity (see figure 1). Unlike two-
state tunnelling systems, [111]-impurities show two relaxation rates. At low T , the smaller
rate decreases exponentially, 82 = e−2�/kT 80, whereas the larger one tends towards a
constant, 81 = 80. This corresponds to a multiexponential decay of the time-dependent
response and correlation functions (equations (14) and (31)).

(ii) A most particular relaxation behaviour arises for external frequencies ω that are smaller
than the constant rate, ω < 80. Then the relaxation maximum occurs at a temperature
where the smaller rate 82 is equal to the external frequency ω. This maximum is the more
relevant as at low T the spectral weight of the slow contribution exceeds by far that of the
faster rate 81.

(iii) Comparison with recent data on KCl:CN proves the relevance of this relaxation
mechanism. The exponentially decreasing rate 82 explains the large amplitude of the
relaxation peak shown by the external friction Q−1 as a function of temperature at
ν = 84 kHz. By the same token, our model provides a good description for the hump in
the sound velocity.

(iv) The prefactors of δv/v and Q−1 and the relaxation rates are related by the values for the
deformation potential γ , sound velocity v, and mass density ρ. By taking γ as a free
parameter, we obtain reasonable values of γ (compared with similiar materials) satisfying
fits for δv/v and Q−1, involving both absolute values and the temperature dependencies.

(v) The phenomena mentioned in (iii) cannot be explained in terms of relaxation of
corresponding two-level systems. For the latter, the low-temperature rate tends towards a
constant and thus may exceed ω at any T , whereas the small rate 82 of a [111]-impurity
inevitably meets ω at some T and gives rise to a relaxation peak. Though certain aspects of
the thermal and dielectric properties of such doped crystals are described by a ensemble
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of two-state systems, such a model fails in view of the acoustic properties, due to the
multiexponential decay of the elastic response function, equation (14).
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Appendix A. Geometric factor of the [111]-impurity

Time evolution of the phonon heat bath is given by the lattice response function (t � 0)

8(t) =
∑
α

γ 2
α

h̄2 〈[εα
ij (t), ε

α
ij ]〉 (A.1)

where i �= j and the bar indicates the average over crystal axes. The entries of the damping
matrix, equation (20), are determined by the coupled phonon spectrum; in the limit of long
wavelengths one has

8′′(ω) = π

2

∑
kα

f
(ij)

kα γ 2
α

k2

mh̄ωkα

[δ(ω − ωkα) − δ(ω + ωkα)] (A.2)

where

f
(ij)

kα =
(
eαi (k)k̂j + eαj (k)k̂i

)2
(A.3)

accounts for the orientations of wave and polarizations vectors with respect to the crystal axes.
For an isotropic phonon density of states, the sum over phonon modes becomes

1

V

∑
k,α

f
(ij)

kα (. . .) −→ 1

2π2

∑
α

fα

∫ K

0
dkk2(. . .) (A.4)

where we have for each polarization defined the average value

fα = 1

4π

∫
d3f

(ij)

kα . (A.5)

In the Debye model with ωkα = vαk, the damping spectrum finally reads as

8′′(ω) = π

2

∑
kα

fα

γ 2
α

v5
α

ω3

2π2ρh̄
. (A.6)

Since an elastic wave couples via each of the quadrupole operators to the defect according to
equation (10), the geometric factor hkα of the internal friction and the relative change of the
sound velocity of an elastic wave with propagation vector k and polarization vector eα gets

hkα = f
(12)
kα + f

(13)
kα + f

(23)
kα . (A.7)

The factors fα are easily evaluated after expressing the unit vectors k̂ = k/k and e in polar
coordinates θ and φ. Putting k̂ = (sinθsinφ, sinθcosφ, cosθ), one finds for the longitudinal
case e1 = k̂ the factor fl = 4/15.
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Regarding the transverse modes, we obtain ft2 = 8/45 for e2 = (cosφ,−sinφ, 0) and
ft3 = 2/9 for the remaining polarization e3. Though these values depend on the choice of
e2 and e3, their average ft = (1/2)(ft2 + ft3) = 1/5 is independent of the basis. Defining
moreover the mean value of the three polarization directions, f = (1/3)(fl + 2ft ), we finally
have

fl = 4

15
ft = 1

5
f = 2

9
. (A.8)

Thus the quantity, equation (A.3), for longitudinal modes is by a factor fl/ft = 4/3 larger than
the transverse ones. In the average, propagation and polarization directions are uncorrelated,
resulting in

f =
(
〈k̂2

i 〉〈e2
j 〉 + 〈k̂2

j 〉〈e2
i 〉

)
= 2(1/3)2. (A.9)
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